
 

Εφαρμογές της αναλυτικής μηχανικής  Lagrange στο Λύκειο 

 

Το περιεχόμενο της παρούσης εργασίας αναφέρεται στην  επίλυση ασκήσεων λυκειακού επιπέδου, εφαρμόζοντας τις 
βασικές αρχές της αναλυτικής μηχανικής Lagrange. Oι βασικές έννοιες παρουσιάζονται σε δύο σελίδες περίπου, ενώ 

η ορθότητα των απαντήσεων των θεμάτων μπορεί να ελεγχθεί με τη νευτώνεια μηχανική. Ειδικός στη μηχανική 

Lagrange δεν είμαι, απλά επιθυμώ να μοιραστώ τη συγκεκριμένη εργασία  με τους συναδέλφους του υλικονέτ και με 
χαρά θα δεχτώ κάθε παρατήρηση που αφορά λάθη, παραλείψεις, ασάφειες κλπ. 

                                                                                                 Μπάνος Κανέλλος, Φυσικός ΓΕΛ Λουτρακίου 

 

Υπενθύμιση βασικών εννοιών 

 Η συνάρτηση Lagrange είναι μία θεμελιώδης συνάρτηση των θέσεων, των ταχυτήτων και εν γένει του χρόνου για το 

εκάστοτε μηχανικό σύστημα η οποία δίνεται από τη σχέση  L=K-V όπου Κ είναι η κινητική ενέργεια του συστήματος 

και V η δυναμική του ενέργεια. 
 

Για να εκφράσουμε τις ενέργειες αυτές, πρέπει να βρούμε το πλήθος των ανεξάρτητων μεταξύ τους συντεταγμένων 

που απαιτούνται, προκειμένου να καθοριστεί η θέση του συστήματος. Το πλήθος αυτό ορίζει τους βαθμούς 

ελευθερίας του μηχανικού συστήματος. 

 Έτσι: 

• Η θέση ενός σωματιδίου: καθορίζεται από μια συντεταγμένη, αν κινείται επί ευθείας γραμμής, από δύο 

συντεταγμένες, αν κινείται ελεύθερα επί  ενός επιπέδου και από τρεις συντεταγμένες, αν κινείται ελεύθερα στον 
χώρο. 

• Η θέση ενός στερεού σώματος: καθορίζεται από 6 συντεταγμένες, αν κινείται ελεύθερα στο χώρο (3 για τη θέση 

του κέντρου μάζας και 3 για την περιστροφή του) και από 3 συντεταγμένες, αν κινείται ελεύθερα σε ένα επίπεδο (2 
για το κέντρο μάζας και 1 για την περιστροφή).  

• Η θέση ενός συστήματος σωμάτων προσδιορίζεται από τον συνδυασμό των δύο παραπάνω προτάσεων. 

 
 Είναι δυνατόν, όμως, να υπάρχουν περιορισμοί στην κίνηση ενός συστήματος. Οι περιορισμοί αυτοί  ονομάζονται 

δεσμοί και επιβάλλονται από δυνάμεις. Μία κατηγορία δεσμών είναι οι ολόνομοι δεσμοί που δίνονται υπό μορφή 

εξισώσεων  μεταξύ των συντεταγμένων και είναι δυνατόν να περιέχουν το χρόνο ή όχι. 

 
Παράδειγμα (1): ένα σωματίδιο που εξαναγκάζεται να κινείται επί της επιφάνειας μίας σφαίρας γνωστής ακτίνας R 

υφίσταται έναν περιορισμό (δεσμό) στην κίνησή του σε σχέση με την ελεύθερη κίνηση στο χώρο, που εκφράζεται από 

τη σχέση 
2 2 2 2R x y z   . Η εξίσωση του δεσμού είναι της μορφής f(x,y,z)=0 με 

2 2 2 2f x y z R    . Στην 

περίπτωση αυτή αρκεί να γνωρίζουμε δύο εκ των τριών συντεταγμένων (x,y,z) προκειμένου να καθοριστεί η θέση του 

σωματιδίου.  
Επομένως, η ύπαρξη του δεσμού μείωσε κατά μία τις συντεταγμένες, δηλαδή το πλήθος των ανεξάρτητων 

συντεταγμένων είναι δύο πλέον. Λέμε τότε ότι το σύστημα αυτό έχει δύο βαθμούς ελευθερίας. 

 

Παράδειγμα (2): Στο απλό εκκρεμές γνωστού μήκους L που η κίνηση εξελίσσεται σε κατακόρυφο 
επίπεδο, η θέση της μάζας m καθορίζεται από τις καρτεσιανές συντεταγμένες (x,y) ή τις πολικές 

συντεταγμένες (r,φ). Όμως, υπάρχει ένας δεσμός που οφείλεται στο μη εκτατό του νήματος και 

εκφράζεται απ’ τη σχέση  
2 2 2x y  σε καρτεσιανές, ή τη σχέση r  σε πολικές. Η εξίσωση 

του δεσμού σε καρτεσιανές είναι 
2 2 2f x y   , ενώ σε πολικές είναι f r  . Επομένως, 

αρκεί η γνώση μίας συντεταγμένης εκ των δύο. Άρα, το σύστημα έχει έναν βαθμό ελευθερίας.  
 

•  Εξισώσεις Euler-Lagrange: αφού βρούμε το πλήθος των βαθμών ελευθερίας του συστήματος, επιλέγουμε 

ανάλογα με το πρόβλημα τις κατάλληλες συντεταγμένες που ονομάζονται γενικευμένες και γράφουμε τη συνάρτηση 

Lagrange. 
 

α) Αν όλες οι δυνάμεις που ασκούνται στο σύστημα είναι συντηρητικές και οι δεσμοί είναι ολόνομοι , τότε, αν με q 

συμβολίσω μία από τις γενικευμένες συντεταγμένες, οι εξισώσεις Euler-Lagrange είναι διαφορικές εξισώσεις 2ης 

τάξης που έχουν τη μορφή             0
d L L

dt qq


 
    

   

 

β) Στην περίπτωση που ενεργούν στο σύστημα και μη συντηρητικές δυνάμεις οι εξισώσεις για μια εκ των 

γενικευμένων συντεταγμένων q παίρνουν τη μορφή 

  q

d L L
Q

dt qq


 
    

   

 ,όπου η ποσότητα q

r
Q F

q


 


    ονομάζεται γενικευμένη δύναμη που αντιστοιχεί στη 



γενικευμένη συντεταγμένη q και είναι το εσωτερικό γινόμενο  της  συνισταμένης F των μη συντηρητικών  

δυνάμεων και της παραγώγου του διανύσματος θέσης ως προς τη γενικευμένη συντεταγμένη q. 

 

•  Η χρονική παράγωγος ενός μεγέθους συμβολίζεται με το μέγεθος και μια τελεία από πάνω του και η 2η παράγωγος 

βάζοντας 2 τελείες αντίστοιχα. Έτσι: 
dx

x
dt



 , 
d

x
dt



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• Μερικές παράγωγοι:  Αν f είναι μια συνάρτηση δύο ή περισσοτέρων μεταβλητών, τότε 
f

x




 είναι η μερική 

παράγωγος ως προς τη μεταβλητή x, δηλαδή παραγωγίζω την f θεωρώντας τις y και z ως σταθερές. Τα αντίστοιχα 

ισχύουν για τις 
f

y




 και 

f

z




.  Έτσι, για παράδειγμα, αν f(x,y,z)=x2y3+2xyz+z2 ,θα έχω 

     

 

 

•Ανάδελτα βαθμωτής συνάρτησης f:    
f f f

f x y z
x y z

    
   

  
  σε καρτεσιανές συντεταγμένες, 

 

                                                                       
1f f

f r
r r




  
  

 
 σε πολικές (r,θ)  

 

• Πολικές συντεταγμένες (r, θ):  

Διάνυσμα θέσης υλικού σημείου:     r x x y y r x r y 
   

     

Μοναδιαία  διανύσματα:     r x y 
  

   και x y  
  

    

Τα μοναδιαία ,r 
 

 δεν είναι σταθερά σε αντίθεση με τα ,x y
 

. Ισχύουν  
r










 και r







 


. 

 

• Αν ένα σώμα μάζας m κινείται επί ευθείας γραμμής δεχόμενο συνισταμένη δύναμη της μορφής –Dx με D θετική 

σταθερά, τότε με βάση το 2ο νόμο του Νεύτωνα ισχύει  
20 0

D
F m Dx m x x x x x

m
 

  

            με

2 D

m
   . Η διαφορική εξίσωση της μορφής 

2 0x x


   είναι γραμμική 2ης τάξης με σταθερούς συντελεστές και 

περιγράφει την κίνηση της απλής αρμονικής ταλάντωσης περί της θέσης ισορροπίας x=0. Η γενική λύση της είναι 

                                                                 ( )x t a t t     

Οι σταθερές α και β υπολογίζονται από τις αρχικές συνθήκες του προβλήματος, που είναι οι τιμές της θέσης  x(0) και 

της ταχύτητας (0) (0)x


  τη χρονική στιγμή t=0. 

 
Διατηρούμενα μεγέθη:  

α) Ενέργεια:  Αν ο χρόνος δεν εμφανίζεται ρητά στη συνάρτηση Lagrange, τότε υπάρχει ένα ολοκλήρωμα (σταθερά) 
της κίνησης που ονομάζεται ολοκλήρωμα του Jacobi:  

Αν 0
L

t





τότε 

1

.
N

i i

i

J q p L 




 
   
 
  όπου i

i

L
p

q







 λέγεται γενικευμένη ορμή που αντιστοιχεί στη 

συντεταγμένη qi. Επιπλέον, αν ο χρόνος δεν εμφανίζεται ρητά και στις εξισώσεις των δεσμών, τότε το ολοκλήρωμα 

Jacobi ταυτίζεται με τη μηχανική ενέργεια του συστήματος, δηλαδή J=K+V=E=σταθ. 
 

β) Γενικευμένη ορμή:  Αν στη συνάρτηση Lagrange δεν περιέχεται μια γενικευμένη συντεταγμένη q, τότε η 

αντίστοιχη γενικευμένη ορμή παραμένει σταθερή, δηλαδή  

αν   0
L

q





 τότε 0 0 0 .q q

d L L d
p p

dt q dtq




 
         

   

  

 

 

3 2 22 2 yz, 3 2 , 2 2
f f f

xy x y xz xy z
x y z

  
     

  



 

Άσκηση 1 
Ένα σώμα μάζας m=1Kg κινείται στο ομογενές πεδίο βαρύτητας g=10 m/s2.

 
 

α) Το σώμα εκτελεί ελεύθερη πτώση, 
β) Το σώμα κινείται προς την κορυφή ενός λείου κεκλιμένου επιπέδου, με γωνία κλίσης φ=300, υπό την επίδραση 

σταθερής δύναμης μέτρου F=20 N, παράλληλης στο κεκλιμένο, 

γ) Το σώμα κινείται όπως στην περίπτωση β), αλλά μεταξύ σώματος και επιπέδου υπάρχει τριβή μέτρου Τ=10 Ν, 
 

Για τις περιπτώσεις (α), (β) και (γ)  να γραφεί i) η συνάρτηση Lagrange και ii) να υπολογιστεί η επιτάχυνση του 

σώματος.  
 

Απάντηση 
 

α)  i) Το σώμα m κινείται κατά μήκος του άξονα z, επομένως 
το σύστημα έχει έναν βαθμό ελευθερίας.  

Η κινητική ενέργεια είναι 

2 2
21 1 1

2 2 2

dz
K m m m z

dt


 
   

 
  

 

Λαμβάνοντας το επίπεδο xy ως επίπεδο αναφοράς, η δυναμική 

ενέργεια είναι V mgz   

Συνάρτηση Lagrange:       

2
1

2
L K V m z mgz



         

ii) Εξίσωση Ε-L:  

2
0 ( ) 0 10

d L L d m
m z mg m z mg z g

dt z dt sz

  



    
                     

 

Το (-) δείχνει ότι η επιτάχυνση έχει κατεύθυνση προς τα κάτω. 

 

 β) i) Η κινητική ενέργεια είναι 

2
1

2
K m x



 . Η F ως σταθερή δύναμη 

είναι συντηρητική, επομένως ορίζεται δυναμική ενέργεια και ισχύει 

F

dV
F V Fdx F dx Fx c

dx
           . Θεωρώ ότι για x=0 είναι 

VF=0, οπότε προκύπτει c=0 (το πρόβλημα λύνεται και χωρίς τη θεώρηση 
αυτή). 

Η δυναμική ενέργεια είναι  . FV V V mgx Fx      

H Λαγκρανζιανή του προβλήματος είναι 
2

1

2
L K V m x mgx Fx



      

ii) Εξίσωση E-L:   20 0 15 / s
d L L d

m x mg F m x F mg x m
dt x dtx

  
  



    
                    

 

 

γ) i) Η συνάρτηση L είναι ίδια με την περίπτωση (β)  

2
1

2
L m x mgx Fx



      

ii) Η εξίσωση E-L είναι x

d L L
Q

dt xx


  
  

   

. Αν x


 είναι το μοναδιαίο διάνυσμα του άξονα x, τότε το διάνυσμα θέσης 

του σώματος γράφεται r x x x


  και η γενικευμένη δύναμη 
x

x x
r

Q T T x T x x T
x x



  

 
            

 
.  

οπότε η εξίσωση E-L γίνεται: 

  25 /x

d L L d
Q m x mg F T m x F mg T x m s

dt x dtx

  
  



    
                      

 

 

 



 

Άσκηση 2 
 

Στο διπλανό σχήμα, το σώμα m αναρτάται στο ελεύθερο άκρο του ελατηρίου σταθεράς k, ενώ 
αυτό έχει το φυσικό του μήκος και κατόπιν τη στιγμή t=0 αφήνεται ελεύθερο να κινηθεί στο 

ομογενές πεδίο βαρύτητας g . 

Αν y είναι η θέση του σώματος τη χρονική t, μετρούμενη από τη θέση φυσικού μήκους 
0

 

του ελατηρίου, τότε: 

α) Να γραφεί η λαγκρανζιανή του συστήματος, 
β) Να αποδειχθεί ότι το σώμα m θα εκτελέσει απλή αρμονική ταλάντωση,  

γ) Να αποδειχθεί ότι η μηχανική ενέργεια του συστήματος διατηρείται, 

δ) Να υπολογιστεί η μετατόπιση του σώματος, από την αρχική του θέση έως τη στιγμή που η ταχύτητά του 
μηδενίζεται στιγμιαία.  

 

Απάντηση 
 

α) Το σώμα m κινείται κατά μήκος του άξονα y, επομένως η κινητική του ενέργεια είναι
2 2

21 1 1

2 2 2

dy
K m m m y

dt


 
   

 
. 

 Λαμβάνοντας υπόψη το επίπεδο αναφοράς (Vβ=0) για τη δυναμική βαρυτική ενέργεια, η δυναμική ενέργεια του 

συστήματος είναι 
21

2
V V V mgy ky      , επομένως η συνάρτηση Lagrange του συστήματος είναι 

                                                                      

2

21 1

2 2
L K V m y mgy ky



      

 

β) Το σύστημα έχει έναν βαθμό ελευθερίας γι αυτό θα έχουμε μια εξίσωση E-L: 

 

 0 0 0 0
d L L d mg

m y mg ky m y ky mg m y k y
dt y dt ky

  



 
                      

       

. 

Θέτοντας 
mg

y
k

   και παραγωγίζοντας δύο φορές ως προς το χρόνο παίρνουμε 0y y 
   

    , άρα η 

τελευταία εξίσωση παίρνει τη μορφή 0 0
k

m k
m

   
 

     . Η εξίσωση αυτή αποδεικνύει ότι το σώμα εκτελεί 

απλή αρμονική ταλάντωση περί της θέσης ισορροπίας ξ=0, δηλαδή της θέσης 
mg

y
k

  με περίοδο 

2 2
2

m
T

kk
m

 



   . 

 
γ) Σύμφωνα με τη θεωρία η μηχανική ενέργεια διατηρείται όταν τόσο η συνάρτηση Lagrange όσο και οι δεσμοί του 

προβλήματος, δεν περιέχουν ρητά τον χρόνο t. Το σώμα m κινείται επί του άξονα y, επομένως σε σχέση με την 

ελεύθερη κίνηση στο χώρο υφίσταται τους δεσμούς x=z=0. Τόσο η συνάρτηση L που βρήκαμε στο πρώτο ερώτημα 

όσο και οι δεσμοί ικανοποιούν την παραπάνω απαίτηση, άρα υπάρχει το ολοκλήρωμα Jacobi που εκφράζει τη 
διατήρηση της μηχανικής ενέργειας. Πράγματι: 

 

2 2

2 21 1 1 1
( ) .

2 2 2 2

L
J y L y m y m y mgy ky m y mgy ky E

y


    



 
               

    

 (1) 

Η τιμή της σταθεράς E είναι ίση με μηδέν διότι με βάση την εκφώνηση, τη στιγμή t=0 το ελατήριο έχει το φυσικό του 

μήκος (y=0) και το σώμα μηδενική ταχύτητα ( 0)y


 . 

 

δ) Θέτοντας 0y



 
και 0E   στη σχέση (1) προκύπτει y=0 (αρχική θέση)  ή 

2mg
y

k
 . 

 



 

Άσκηση 3 
 

H ομογενής τροχαλία του διπλανού σχήματος έχει μάζα M, ακτίνα R και μπορεί να περιστρέφεται χωρίς τριβές γύρω 
από οριζόντιο άξονα, κάθετο στο επίπεδό της, που διέρχεται από το κέντρο της Κ. Στην περιφέρεια της τροχαλίας 

έχουμε τυλίξει πολλές φορές ένα αβαρές και μη εκτατό νήμα και στο 

ελεύθερο άκρο του έχουμε δέσει ένα σώμα μάζας m. Κάποια στιγμή (t=0) το 

σώμα m αφήνεται ελεύθερο να κινηθεί στο ομογενές πεδίο βαρύτητας g .  

Τη χρονική στιγμή t το σώμα έχει μετατοπιστεί κατά x από την αρχική του 
θέση και η τροχαλία έχει στραφεί κατά γωνία φ.  

α) Να γραφεί η συνάρτηση Lagrange του συστήματος, 

β) Να υπολογιστούν οι επιταχύνσεις του σώματος m και της τροχαλίας, 
γ) Να υπολογιστεί η τάση του νήματος. 

Δίνονται: Μ=4m, η ροπή αδράνειας της τροχαλίας ως προς τον άξονα 

περιστροφής της είναι 
21

2
cmI MR  και θεωρούμε ότι το νήμα δεν γλιστρά 

στην τροχαλία καθώς ξετυλίγεται. 

 

Απάντηση 
 

α) Η θέση του συστήματος καθορίζεται κάθε στιγμή t από δύο συντεταγμένες x και φ, όπου x είναι η μετατόπιση του 

σώματος m και φ η γωνία στροφής της τροχαλίας στον ίδιο χρόνο. 

  
Εξαιτίας της μη ολίσθησης του νήματος στην τροχαλία και του μη εκτατού του νήματος, οι συντεταγμένες x, φ  

 

συνδέονται με τη σχέση x=Rφ (1) που αποτελεί τον δεσμό του προβλήματος, επομένως το σύστημα έχει 1 βαθμό 

ελευθερίας. Παραγωγίζοντας τη σχέση (1) ως προς το χρόνο προκύπτει x R
 

 (2)  και x R
 

  (3) 

 

Η κινητική ενέργεια του συστήματος είναι:  

 
2 2 2 2

(2) 42 2 21 1 1 1 1 1 3

2 2 2 2 2 2 2 2

M m

m

M
K K K m I m x MR K m x K m x   

   
 

           
 

, ενώ η  

 

δυναμική βαρυτική ενέργεια λαμβάνοντας υπόψη το επίπεδο αναφοράς (Vβ=0) του σχήματος είναι V mgx  . 

 

Η λαγκρανζιανή του συστήματος είναι 

2
3

2
L K V m x mgx



    . 

 

 

β) Το σύστημα έχει έναν βαθμό ελευθερίας γι αυτό θα έχουμε μια εξίσωση E-L:  
 

0 3 0 3
3

d L L d g
m x mg m x mg x

dt x dtx


  



    
                 

.  

 
Παραγωγίζοντας τη σχέση (2) ως προς το χρόνο προκύπτει ότι η γωνιακή επιτάχυνση της τροχαλίας είναι  

 

3 3

g g
x R R

R
   

   

      .   

 

 γ) Στο ερώτημα (β) επιβάλλαμε εξαρχής τον δεσμό x=Rφ στη συνάρτηση Lagrange. Το μειονέκτημα αυτού του 

τρόπου εργασίας είναι ότι δεν μπορούμε να υπολογίσουμε τη δύναμη που επιβάλλει αυτό τον δεσμό. Για να την 
υπολογίσουμε τροποποιούμε τη συνάρτηση Lagrange. 

 

 

 

 

 

 



 

Τρόπος υπολογισμού των αντιδράσεων των δεσμών                                                                                                 

Αντιδράσεις των δεσμών ονομάζονται οι γενικευμένες δυνάμεις που αναπτύσσονται εξαιτίας των δεσμών και για να 

τις υπολογίσουμε κάνουμε τα εξής: 
i) Γράφουμε τη συνάρτηση Lagrange χωρίς να λάβουμε υπόψη τους δεσμούς (σαν να μην υπάρχουν), εισάγοντας 

παράλληλα σε αυτήν τα γινόμενα λifi και η συνάρτηση γίνεται L=K-V+λ1f1+λ2f2+….  

Οι παράμετροι  λ1 , λ2, …  λέγονται πολλαπλασιαστές Lagrange και μπορεί να είναι σταθεροί ή χρονοεξαρτώμενοι, 
ενώ  f1, f2, …  είναι οι εξισώσεις των δεσμών.  

 

Με αυτό τον τρόπο αυξάνουμε τους βαθμούς ελευθερίας του συστήματος, αφού οι πραγματικοί αριθμοί λi  
θεωρούνται  παράμετροι του προβλήματος. 

 ii) Γράφουμε τις εξισώσεις E-L  

iii) Επιβάλλουμε τους δεσμούς σε αυτές τις εξισώσεις.  

Η γενικευμένη δύναμη που αναπτύσσεται λόγω του εκάστοτε δεσμού υπολογίζεται απ’ τη σχέση  ύF f   , 

όπου f  είναι ένα διάνυσμα που δείχνει την κατεύθυνση της δύναμης. 

 

Η συνάρτηση L λαμβάνοντας υπόψη το επίπεδο αναφοράς(V=0) για τη δυναμική ενέργεια και μη λαμβάνοντας 
υπόψη τον δεσμό είναι: 

   
2 2 2 2

1 1 1 1
( )

2 2 2 2
cm cmL K V f m x I mgx x R m x I mgx x R      

   

             
 

Με τη μέθοδο αυτή αυξήσαμε τους βαθμούς ελευθερίας του συστήματος από έναν σε τρεις μιας και το λ αποτελεί μια 

παράμετρο του προβλήματος. 
 

Οι μερικές παράγωγοι είναι: 

        

, , ,cm

L L L L
m x mg R

xx

  


 

 

   
      

  

 

Οι εξισώσεις E-L:  για τη συντεταγμένη x είναι 

0 0
d L L d

m x mg m x mg x g
dt x dt mx


 

  



    
                   

   (4) 

για τη συντεταγμένη φ είναι  

421 2
0 0

2 2

M m

cm

d L L d
I R MR R R

dt dt M mR

 
     



   




                    
    

 (5) 

για την παράμετρο λ είναι   0 0
d L L

x R x R
dt

 




  
       

   

  δίνει πάλι τον δεσμό. 

(4),(5) 3 2
(3)

2 2 3
g g mg

m m m

  
           

 

Η γενικευμένη δύναμη που απορρέει από τον δεσμό με εξίσωση f x R 
       

 

• για την καρτεσιανή συντεταγμένη x είναι 

 

 
 

ύ

x Rf
F f x x x

x x



   

   
    

 
 = 

2

3
mg x



 , δεν είναι τίποτα άλλο από την δύναμη που ασκεί το 

νήμα στο σώμα m, ενώ 

 

• για τη γωνιακή συντεταγμένη φ που μετράει την περιστροφή της τροχαλίας περί το κέντρο της είναι 

  2

3
ύ

x Rf
F R mgR


      

 

    
    

   
δηλαδή είναι η ροπή  της τάσης του νήματος που ευθύνεται 

για την περιστροφή της τροχαλίας.  

 
Με τη μέθοδο που εργαστήκαμε στο ερώτημα (γ), μπορούμε εκτός της τάσης του νήματος, να υπολογίσουμε μέσω 

των σχέσεων (4) και (5) και τις επιταχύνσεις x


και  


 των σωμάτων του συστήματος. 

 

 



Άσκηση 4 
 

Ομογενής σφαίρα μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει επί 

ενός κεκλιμένου επιπέδου, γωνίας κλίσης θ στο ομογενές πεδίο βαρύτητας 

g . Δίνεται η ροπή αδράνειας της σφαίρας 
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5
cmI mR  

Να υπολογιστούν: η επιτάχυνση του κέντρου μάζας της σφαίρας, η γωνιακή 
της επιτάχυνση και η στατική τριβή. 

 

Απάντηση 
 
Λύνεται με τον ίδιο τρόπο που λύθηκε η άσκηση 3. 

 

Όπως είναι γνωστό, η συνθήκη της κύλισης χωρίς ολίσθηση είναι x=Rφ (1).  
Η σχέση αυτή αποτελεί τον δεσμό της κίνησης και η εξίσωση του δεσμού είναι της μορφής f(x,φ)=0, άρα  

f(x,φ) = x-Rφ. 

 
Η συνάρτηση L λαμβάνοντας υπόψη το επίπεδο αναφοράς(V=0) για τη δυναμική ενέργεια και μη λαμβάνοντας 

υπόψη τον δεσμό είναι: 

   
2 2 2 2

1 1 1 1
( )

2 2 2 2
cm cmL K V f m x I mgx x R m x I mgx x R        

   

             
 

 

Οι εξισώσεις E-L:  για τη συντεταγμένη x είναι 

0 0
d L L d

m x mg m x mg x g
dt x dt mx


    

  



    
                   

   (2) 

για τη συντεταγμένη φ είναι  0 0cm cm

cm

d L L d R
I R I R

dt dt I


    



  



                 
    

 (3) 

για την παράμετρο λ είναι   0 0
d L L

x R x R
dt

 




  
       

   

  δίνει πάλι τον δεσμό 

Από τη σχέση (1) παραγωγίζοντας δύο φορές ως προς τον χρόνο προκύπτει x R
 

  (4) και λύνοντας το σύστημα 

των εξισώσεων (2), (3), και (4),  αντικαθιστώντας παράλληλα τη ροπή αδράνειας, βρίσκουμε  

 

2

7
mg    ,  

5

7
cm x g 



  ,   
5

7

g

R
  



  .   

 

Η γενικευμένη δύναμη που απορρέει από τον δεσμό με εξίσωση f x R 
       

 

• για την καρτεσιανή συντεταγμένη x που μετράει τη μετατόπιση του κέντρου μάζας της σφαίρας είναι 

 

 
 

ύ

x Rf
F f x x x

x x



   

   
    

 
 =

2

7
mg x



 , δηλαδή  συμπίπτει με την κλασική δύναμη και

 
δεν είναι τίποτα άλλο από τη στατική τριβή, ενώ 
 

• για τη γωνιακή συντεταγμένη φ που μετράει την περιστροφή περί το κέντρο μάζας της σφαίρας είναι 

  2

7
ύ

x Rf
F R mgR

x x



      

    
    

   
δηλαδή είναι η ροπή  της στατικής τριβής που 

ευθύνεται για την περιστροφή της σφαίρας.  

 

 

 

 

 



Άσκηση 5  (πανελλήνιες 2012) 

  

Ομογενής και ισοπαχής δοκός (ΟΑ), μάζας Μ=6 Kg και μήκους =0,3 m, 

μπορεί να στρέφεται χωρίς τριβές σε κατακόρυφο επίπεδο γύρω από οριζόντιο 
άξονα που περνά από το ένα άκρο της Ο. Στο άλλο της άκρο Α υπάρχει 

στερεωμένη μικρή σφαίρα μάζας m=M/2. Ασκούμε στα άκρο Α δύναμη, 

σταθερού μέτρου F=(120/π) Ν, που είναι συνεχώς κάθετη στη δοκό, όπως 

φαίνεται στο σχήμα. Αν φ είναι η γωνία στροφής της ράβδου σε χρόνο t, τότε: 
α) Να γραφεί η συνάρτηση Lagrange του συστήματος, 

β) Να υπολογιστεί η γωνιακή επιτάχυνση του συστήματος συναρτήσει της 

γωνίας φ, 
γ) Να υπολογιστεί η γωνιακή ταχύτητα του συστήματος, όταν η ράβδος 

διέρχεται από την οριζόντια θέση, 

δ) Επαναφέρουμε το σύστημα δοκού-σφαίρας στην αρχική κατακόρυφη θέση του. Ασκούμε στο άκρο Α δύναμη, 

σταθερού μέτρου 
1 30 3F N , που είναι συνεχώς κάθετη στη δοκό. Να βρεθεί η γωνία που σχηματίζει η δοκός με 

την κατακόρυφο τη στιγμή που η κινητική της ενέργεια γίνεται μέγιστη για πρώτη φορά. 

Δίνονται: g=10m/s2 και η ροπή αδράνειας της δοκού ως προς τον άξονα περιστροφής 
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3
I M  .  

 

Απάντηση 
 

α) Αν η ράβδος μπορούσε να κινηθεί ελεύθερα στο επίπεδο Οxy, θα απαιτούνταν τρεις συντεταγμένες για τον 

καθορισμό της θέσης της. Επειδή το άκρο της Ο είναι ακλόνητο, τότε σύμφωνα με το σύστημα αξόνων Οxy του 

σχήματος, θα πρέπει να ισχύει x=y=0 για το σημείο αυτό, ενώ για τη σφαίρα ισχύει 
2 2 2x y L    Οι παραπάνω 

σχέσεις αποτελούν τους δεσμούς του προβλήματος. Η γνώση της γωνίας φ είναι αρκετή για τον καθορισμό της θέσης 

του συστήματος. Αυτήν επιλέγω ως γενικευμένη συντεταγμένη. 

Κινητική ενέργεια

2 2
2 2 2 22

1 1 1 5

2 2 3 12

M
m

K I m K M  
  

      
 

, η δυναμική βαρυτική ενέργεια 

λαμβάνοντας τον άξονα y ως επίπεδο αναφοράς είναι 2

2

M
m

V g mg V Mg  


      .  

Η δύναμη F  είναι μη συντηρητική, διότι το έργο που παράγει σε μια πλήρη περιστροφή της ράβδου (κλειστή 

διαδρομή) είναι μη μηδενικό αφού 2F FW F     , επομένως η συνάρτηση Lagrange είναι   

                                                          

2

25

12
L K V g 



         

 

β) Εξίσωση E-L:  
d L L

Q
dt






  
   

  

 (1) όπου 
r

Q F



 


 είναι η γενικευμένη δύναμη που αντιστοιχεί στη 

γενικευμένη συντεταγμένη φ και r  είναι το διάνυσμα θέσης του σημείου εφαρμογής της δύναμης F (σημείο Α). Με 

βάση τα μοναδιαία διανύσματα ,r 
  

 
 

του πολικού συστήματος συντεταγμένων που φαίνονται στο σχήμα, η δύναμη  

F  γράφεται F F


  και το διάνυσμα θέσης r r


 . Για τις παραγώγους έχουμε: 

2 25 5

6 6

d L d
M M

dt dt
 



 



       
    

,   
L

Mg 



 


   και  για τη γενικευμένη δύναμη, 

( )r r
Q F F F F F      

 

 
      

        
 

 δηλαδή ισούται με τη ροπή της δύναμης  F  ως προς τον 

άξονα περιστροφής.  

 
Αντικαθιστώντας στη σχέση (1) και λύνοντας βρίσκουμε ότι η γωνιακή επιτάχυνση που αποκτά η ράβδος είναι 

10
200

3
F 



    (2) .  

 



γ) Απ’ τη σχέση (2) προκύπτει 
10 10 10

200 200 200
3 3 3

d d d
F F F

dt d dt

  
   



 


       

0 0 0

10 10
200 200

3 3

d F
F d d d

d

  

      




  

         

2

10
200 0

2 3
F


  



     

 
20

400 1
3

F  


   .  Αντικαθιστώντας F=120/π Ν και φ=π/2 προκύπτει 0 


  . 

 

 

δ) Θέτοντας στη σχέση (2) 0


 και 
1 30 3F F    προκύπτει 

3

2 3
rad


    . 

 
 

 

 

 

 

Άσκηση 6 

   
Στο διπλανό σχήμα η τροχαλία μάζας Μ και ακτίνας R μπορεί να περιστρέφεται χωρίς τριβές γύρω από οριζόντιο 

ακλόνητο άξονα, κάθετο στο επίπεδό της που διέρχεται από το κέντρο της. Το ελεύθερο άκρο του ιδανικού ελατηρίου 

σταθεράς k και φυσικού μήκους 0 , συνδέεται με το σώμα μάζας m μέσω ενός αβαρούς και μη εκτατού νήματος που 

διέρχεται από το αυλάκι της τροχαλίας. Αρχικά το σώμα m συγκρατείται έτσι ώστε το ελατήριο να έχει το φυσικό του 

μήκος. Η ροπή αδράνειας της τροχαλίας είναι Ιcm.=(1/2)ΜR2, για τις μάζες ισχύει Μ=4m, θεωρούμε ότι το νήμα δεν 

ολισθαίνει ως προς την τροχαλία και η επιτάχυνση της βαρύτητας 

είναι g . 

Κάποια στιγμή (t=0) το σώμα m αφήνεται ελεύθερο. Τη χρονική 

στιγμή t, το σώμα έχει μετατοπιστεί κατά x.  
α) Να γραφεί η συνάρτηση Lagrange του συστήματος, 

β) Να αποδειχθεί ότι το σώμα m εκτελεί AAT και να υπολογιστεί η 

περίοδος, 
γ) Να βρεθεί η μέγιστη επιμήκυνση του ελατηρίου, 

δ) Να υπολογιστεί η μέγιστη ταχύτητα που αποκτά το σώμα m.   

Απάντηση 

 
α) Η θέση του συστήματος καθορίζεται κάθε στιγμή t από δύο 

συντεταγμένες x και φ, όπου x είναι η μετατόπιση του σώματος m και φ η γωνία στροφής της τροχαλίας στον ίδιο 

χρόνο. Επίσης x είναι και η μετατόπιση του ελεύθερου άκρου του ελατηρίου στον ίδιο χρόνο. 
 

Εξαιτίας της μη ολίσθησης του νήματος στην τροχαλία και του μη εκτατού του νήματος, οι συντεταγμένες x, φ 

συνδέονται με τη σχέση x=Rφ (1) και δεν είναι ανεξάρτητες μεταξύ τους, επομένως αρκεί να γνωρίζω μία από τις δύο 
(1 βαθμός ελευθερίας για το σύστημα) για τον καθορισμό της θέσης του συστήματος. 

 

Η κινητική ενέργεια του συστήματος είναι    

2 2

2 21 1 1 1

2 2 2 2
mK K m I m x I   

 

         

Από τη σχέση (1) προκύπτει  
dx d d

R x R x R
dt dt dt


 

  

       και θέτοντας   
2 21

4 2
2

I mR mR   η κινητική 

ενέργεια του συστήματος γίνεται 

2
3

2
K m x



 . 

Η δυναμική ενέργεια του συστήματος λαμβάνοντας υπόψη το επίπεδο αναφοράς (V=0) του σχήματος είναι  

21

2
V mgx kx   . Επομένως η συνάρτηση Lagrange που περιγράφει το σύστημα είναι 

                                                  

2

23 1

2 2
L K V m x mgx kx



      (2) 



β) Επειδή το σύστημα έχει έναν βαθμό ελευθερίας προκύπτει μια εξίσωση Euler-Lagrange 0
d L L

dt xx


  
  

   

 

Οι μερικές παράγωγοι είναι 3
L

m x

x





 
 

 
 

 και 
L

mg kx
x


 


, οπότε η εξίσωση γίνεται  

3 0 3 0 3 0
d mg

m x mg kx m x kx mg m x k x
dt k

     
             

   
. (3) 

Θέτω 
mg

x x x
k

  
   

      , επομένως η διαφορική γίνεται 3 0 0
3

k
m k

m
   
 

     .  

 

Η τελευταία εξίσωση αποδεικνύει ότι το σώμα m εκτελεί ΑΑΤ περί της θέσης ισορροπίας 0  , δηλαδή περί της 

θέσης 
mg

x
k

 με γωνιακή συχνότητα 
3

k

m
  και περίοδο 

3
2

m

k
  . 

 

 

 
γ) Η σχέση (2) δεν περιέχει ρητά τον χρόνο t, επομένως υπάρχει το ολοκλήρωμα Jacobi. Επειδή ούτε η σχέση (1) που 

περιγράφει τον δεσμό του προβλήματος περιέχει ρητά τον χρόνο, προκύπτει ότι το ολοκλήρωμα Jacobi ταυτίζεται με 

τη μηχανική ενέργεια του συστήματος. 
 

Πράγματι 

2 2

2 23 1 3 1
3 .

2 2 2 2
x

L
J x p L x L x m x m x mgx kx m x mgx kx

x


     



   
                     

 (4). 

 
Η τιμή της σταθεράς Ε ισούται με μηδέν, διότι τη χρονική στιγμή t=0, σύμφωνα με την εκφώνηση, το σώμα m είχε 

ταχύτητα  0 0x


   και το ελατήριο μηδενική παραμόρφωση (x=0).  

 

Η επιμήκυνση του ελατηρίου καθίσταται μέγιστη  τη στιγμή που η ταχύτητα του σώματος  m μηδενίζεται στιγμιαία 
(κατώτερη θέση στην κίνησή του). 

 

Αν θέσουμε 0x


  στη σχέση 

2

23 1
0

2 2
m x mgx kx



    , προκύπτει  max

2mg
x

k


 
 

δ)  Από τη σχέση (3) μηδενίζοντας την επιτάχυνση του σώματος m προκύπτει ότι η μεγιστοποίηση της ταχύτητας 

γίνεται στη θέση x=mg/k  (5).
 

 
Αντικαθιστώντας τη σχέση (5) στη σχέση (4), θέτοντας παράλληλα E=0 προκύπτει ότι η μέγιστη ταχύτητα του 

σώματος m είναι  max

3

m
x g

k



 . 

 

 

 
 

 

 

 

 

 
 

 
 

 
  

 

 

 



 

Άσκηση 7  (απλό εκκρεμές) 

Υλικό σημείο μάζας m είναι δεμένο στο ένα άκρο ενός αβαρούς και μη εκτατού νήματος, μήκους , το άλλο άκρο 

του οποίου είναι δεμένο στο σταθερό σημείο Ο. Τη χρονική στιγμή t=0 το σύστημα αφήνεται ελεύθερο να κινηθεί στο 

ομογενές πεδίο βαρύτητας g , από την οριζόντια θέση και με το νήμα 

να είναι τεντωμένο. Γνωστά θεωρούνται:  m, g, R  

α) Ποιους δεσμούς  υφίσταται το υλικό σημείο στη διάρκεια της 

κίνησής του; Να γραφούν οι εξισώσεις των δεσμών. 
β) Να γραφεί η συνάρτηση Lagrange εισάγοντας πολλαπλασιαστές 

Lagrange. 

γ) Να γραφούν οι διαφορικές εξισώσεις της κίνησης του σωματιδίου 

και να υπολογιστεί η τάση του νήματος τη στιγμή που το σωματίδιο 
διέρχεται από το κατώτερο σημείο της κίνησής του. 

 

Απάντηση 
 

α) Η θέση του υλικού σημείου προσδιορίζεται από το ζεύγος των καρτεσιανών συντεταγμένων (x,y) ή των πολικών 

(r,φ). Το σωματίδιο οφείλει στη διάρκεια της κίνησής του να απέχει από το Ο σταθερή απόσταση ίση με το μήκος του 

νήματος. Eπομένως, ισχύει 
2 2 2x y   ή σε πολικές συντεταγμένες ισχύει r   .  Οι σχέσεις αυτές περιγράφουν 

τον μοναδικό δεσμό που διέπει την κίνηση του σωματιδίου. Το πρόβλημα λύνεται πιο εύκολα, αν χρησιμοποιήσουμε 

πολικές συντεταγμένες, οπότε η εξίσωση του δεσμού είναι f r  . 

 

β) Τη χρονική στιγμή t το νήμα σχηματίζει γωνία φ με τον άξονα x. Χωρίς να λάβουμε υπόψη τον δεσμό της κίνησης, 

η κινητική ενέργεια του σωματιδίου είναι  

 
2 2

2 2 21 1 1

2 2 2
x yK m m m x y  

  
     

 
,  όμως απ’ το σχήμα έχω x=rσυνφ,  y=rημφ   και παραγωγίζοντας ως 

προς τον χρόνο προκύπτουν   x r r 
  

  ,     y r r 
  

   
οπότε η κινητική ενέργεια γίνεται  

 
2 2 2 2

2 21 1 1

2 2 2
K m r r mr mr 

    
    

 
.  Η δυναμική ενέργεια θεωρώντας ως επίπεδο αναφοράς τον άξονα x 

  

είναι V mgr  . Επομένως, η συνάρτηση Lagrange είναι:    

 

                                        

2 2

21 1
(r )

2 2
L K V mr mr mgr  

 

         

 

γ)  Μερικές παράγωγοι: 

2

,
L L

mr mr mg
rr

  
 



 
   



,    
2 ,

L L
mr mgr 







 
 



   

Εξισώσεις Euler-Lagrange: 

2

0 0
d L L

m r mr mg
dt rr

  
 



  
       

   

   (1)    

  
2 20 0 (2 ) 0

d L L d
mr mgr m r r r mgr

dt dt
    



   



               
    

  (2)  

           0 0 0
d L L

r r
dt 



  
        

   

    δίνει πάλι τον δεσμό, ενώ 0
dr d

r r
dt dt

 

      και 0r


     

Επιβάλλουμε τώρα τον δεσμό στις εξισώσεις (1) και (2), θέτοντας r   και 0r r
 

   και προκύπτουν 

 
2

mg m  


    (3)     και    
g

 


    (4). 



(4) 

2

0 0

2d g d d g d g g g
d d

dt d dt d

 
   

         
 

  
   

          
 

  και  

 

αντικαθιστώντας τη σχέση αυτή στην (3) προκύπτει  2 3mg mg mg         

 

Η γενικευμένη δύναμη που επιβάλλει τον δεσμό με εξίσωση f r   δίνεται από τη σχέση 

1 1
1 0 3ύ

f f
F f r r mg r

r r r
      



        
         

    
 

Στο κατώτερο σημείο της τροχιάς ισχύει φ=π/2 άρα τελικά 3ύF mg r



   

 

Η δύναμη αυτή δεν είναι τίποτα άλλο από την τάση του νήματος που έχει την ακτινική διεύθυνση, δηλαδή τη 
διεύθυνση του νήματος. Το αρνητικό πρόσημο δείχνει ότι έχει φορά προς το σημείο ανάρτησης Ο. 

 

 
 

 

Άσκηση 8 

Ο ομογενής δίσκος του διπλανού σχήματος έχει μάζα m, ακτίνα R και το κέντρο του συνδέεται με το ένα άκρο 

ιδανικού ελατηρίου σταθεράς k και φυσικού μήκους . Αρχικά το 

ελατήριο έχει το φυσικό του μήκος και ο δίσκος ακινητεί. 

Τη χρονική στιγμή t=0 ασκούμε σταθερή οριζόντια δύναμη F  στο 

κέντρο του δίσκου θέτοντάς τον σε κίνηση, έτσι ώστε να κυλίεται 
χωρίς να ολισθαίνει σε οριζόντιο επίπεδο. 

α) Να γραφεί η συνάρτηση Lagrange. 

β) Να αποδειχθεί ότι το κέντρο του δίσκου εκτελεί απλή αρμονική 

ταλάντωση και να υπολογιστεί η περίοδος. 
γ) Να γραφεί η εξίσωση της γωνιακής ταχύτητας του δίσκου σε 

συνάρτηση με το χρόνο. 

Δίνεται για τον δίσκο Icm=(1/2)mR2. 

 

Απάντηση 

 
α) Η θέση του δίσκου κάθε χρονική στιγμή t καθορίζεται από δύο συντεταγμένες: μια για την κίνηση του κέντρου του 

x και μια για την ιδιοπεριστροφή του φ. Εξαιτίας της κύλισης χωρίς ολίσθηση του δίσκου ισχύει x=Rφ. 

Η σχέση αυτή συνιστά τον δεσμό του προβλήματος με εξίσωση f(x,φ)= x-Rφ  με x R
 

 . Η κινητική ενέργεια του 

δίσκου είναι 
2 2 2 2 2 2 2

21 1 1 1 1 1 1 3

2 2 2 2 2 2 4 4
cmK m x I m x mR m x m x m x 

      

       , η δυναμική ενέργεια του συστήματος 

θεωρώντας επίπεδο αναφοράς για τη δυναμική ενέργεια βαρύτητας τον άξονα x και λαμβάνοντας υπόψη ότι η 

σταθερή δύναμη F είναι συντηρητική είναι 
2 21 1

2 2
V kx mgR Fdx kx mgR Fx c       , επομένως η 

συνάρτηση Lagrange είναι 

2

23 1

4 2
L K V m x kx mgR Fx c



        

β) Εξίσωση Euler-Lagrange: 

3 3 3
0 ( ) 0 0 0

2 2 2

d L L d F
m x kx F m x kx F m x k x

dt x dt kx

  



       
                             

(1). Θέτοντας 

F
x

k
    και παραγωγίζοντας ως προς τον χρόνο προκύπτει x

 

  και x
 

 , επομένως η σχέση (1) γίνεται  

 

 



 

3 2
0 0

2 3

k
m k

m
   
 

      από όπου προκύπτει ότι το κέντρο του δίσκου εκτελεί απλή αρμονική ταλάντωση με 

περίοδο 
3

2
2

m
T

k
  και θέση ισορροπίας την 0 0

F F
x x

k k
       . 

γ) H γενική λύση της διαφορικής με 
2

3

k

m
   είναι 

     1 2 1 2 1 2

F F
t c t c t x t c t c t x t c t c t

k k
                   ενώ     

  1 2x t c t c t 


 
 

 

Αρχικές συνθήκες (t=0):  σύμφωνα με την εκφώνηση  0 0x    και  0 0x


 . Επιβάλλοντας τις αρχικές συνθήκες 

στις εκφράσεις των  x t  και  x t


 βρίσκουμε για τις σταθερές 1 0c   και 
2

F
c

k
   .Οπότε η εξίσωση της 

απομάκρυνσης είναι   
2

3

F k F
x t t

k m k


 
    

 
 

 

γ)      
2 2 2 2 2

3 3 3 3 3

F k F F k k F k k
x t t x t t R t t

k m k k m m k m m
   

      
                

     
   από όπου 

προκύπτει τελικά για τη γωνιακή ταχύτητα του δίσκου   
2 2

3 3

F k k
t t

kR m m
 
  

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Άσκηση 9 

Η ομογενής ράβδος ΑΒ του σχήματος έχει μάζα m, μήκος και 

συγκρατείται αρχικά υπό μικρή κλίση, έτσι ώστε το άκρο της Α να 

ακουμπά σε λείο οριζόντιο δάπεδο. Κάποια στιγμή αφήνεται 
ελεύθερη να κινηθεί χωρίς τριβές, μέσα στο ομογενές πεδίο 

βαρύτητας g . Τη χρονική στιγμή t, ο άξονας της ράβδου 

σχηματίζει με την κατακόρυφο γωνία φ. 

α) Να γραφεί η λαγκρανζιανή του συστήματος, 

β) Να αποδειχθεί ότι το κέντρο μάζας της ράβδου κινείται 

κατακόρυφα, 
γ) Να υπολογιστεί η γωνιακή ταχύτητα της ράβδου τη στιγμή που 

οριζοντιώνεται, 

δ) Να γραφούν οι διαφορικές εξισώσεις κίνησης της ράβδου και να υπολογιστεί η δύναμη που ασκεί το δάπεδο σε 
αυτή τη χρονική στιγμή t. 

 

Δίνεται ότι η ροπή αδράνειας της ράβδου ως προς άξονα κάθετο σε αυτή που διέρχεται από το κέντρο μάζας της είναι 

21

12
cmI m . 

 

Απάντηση 

 

α) Αν η κίνηση της ράβδου στο κατακόρυφο επίπεδο Οxy ήταν τελείως ελεύθερη, το πρόβλημα θα είχε τρεις βαθμούς 

ελευθερίας (x,y για τη θέση του κέντρου μάζας και φ για την περιστροφή). Σύμφωνα με το σύστημα αξόνων, το άκρο 
Α της ράβδου ολισθαίνει επί του άξονα x, άρα ισχύει yA=0 που αποτελεί τον δεσμό του προβλήματος. Επομένως το 

σύστημα έχει δύο βαθμούς ελευθερίας. Επιλέγω ως γενικευμένες συντεταγμένες τη γωνία φ και την τετμημένη x του 

κέντρου μάζας . Για την τεταγμένη y του κέντρου μάζας της ράβδου ισχύει
2

y  , ενώ 
2

y 
 

   

 

Η κινητική ενέργεια της σύνθετης κίνησης που εκτελεί η ράβδος είναι:  

 
2 2 2 2 2 2 2 22

2 2 2 21 1 1 1 1 1 1 1 1

2 2 2 2 4 2 12 2 8 3
cmK m x y I m x m m m x m       

          
           

    

Η δυναμική της ενέργεια ως προς τον άξονα x είναι 
2

V mgy mg   .  Η λαγκρανζιανή του προβλήματος 

είναι  

                                                 

2 2
2 21 1 1

2 8 3 2
L K V m x m mg   

   
      

 
 

β) Αρκεί να δείξουμε ότι η x συνιστώσα της ταχύτητας του κέντρου μάζας της ράβδου είναι μηδενική. Η 

συντεταγμένη x δεν περιέχεται στην συνάρτηση Lagrange και αυτό οδηγεί αυτομάτως στη διατήρηση της 

γενικευμένης ορμής της ράβδου στην x διεύθυνση, η οποία συμπίπτει με την κλασική ορμή. Πράγματι

0 0 0 x

d L L d
m x m x p

dt x dtx


 



    
               

. Από την τελευταία σχέση προκύπτει ότι  

   . 0x x t x t
  

    και επειδή αρχικά η ράβδος ήταν ακίνητη προκύπτει ότι   0x x t


  σε όλη τη 

διάρκεια της κίνησης. 

(Σύμφωνα με τη νευτώνεια μηχανική το κέντρο μάζας της ράβδου κινείται κατακόρυφα, διότι ασκούνται σε αυτή 

δύο κατακόρυφες δυνάμεις: το βάρος και αντίδραση του λείου δαπέδου. Επομένως, δεν υπάρχει αίτιο για να το 

εκτρέψει από την κατακόρυφη διεύθυνση) 

 



 

γ) Η συνάρτηση Lagrange και ο δεσμός του προβλήματος δεν περιέχουν ρητά τον χρόνο, άρα το ολοκλήρωμα Jacobi 

εκφράζει τη διατήρηση της μηχανικής ενέργειας. 
x

L L
J x p p L x

x
 



   

 

   
       

       

 L  

2 2
2 21 1 1

.
2 8 3 2

m x m mg E    
   

      
   

Η τιμή της σταθεράς Ε είναι ίση με
2

mg  (δυναμική ενέργεια της αρχικά ακίνητης ράβδου). Θέτοντας στην 

παραπάνω σχέση 0x


  και λύνοντας ως προς 

2




προκύπτει 
 

 

2

2

12 1

1 3

g 


 

 



    (1). 

Τη στιγμή που η ράβδος γίνεται οριζόντια, ο άξονάς της σχηματίζει με την κατακόρυφο ορθή γωνία, οπότε θέτοντας 

φ=π/2 στη σχέση (1) προκύπτει τελικά  
3g

 


 
 

δ) Η δύναμη που ασκεί το δάπεδο στη ράβδο θα προκύψει ως η αντίδραση του δεσμού yA=0. 

Επειδή το σημείο αναφοράς της ράβδου είναι το κέντρο μάζας της, θεωρούμε μια τυχαία θέση της ράβδου όπου το 

άκρο της Α δεν βρίσκεται εξαρχής στον άξονα x και εκφράζουμε την 
τεταγμένη του yA συναρτήσει της τεταγμένης y του κέντρου μάζας. 

Κατόπιν, τοποθετούμε το σύστημα των αξόνων Οxy έτσι ώστε το Α να 

ολισθαίνει επί του άξονα x. Με βάση τα παραπάνω έχουμε  
 

0
0

2 2 2
Ay

A Ay y y y y  
        . 

Η εξίσωση του δεσμού είναι 
2

f y   . 

Η λαγκρανζιανή εισάγοντας έναν πολλαπλασιαστή Lagrange λ γίνεται 

2 2 2
1 1

2 2 2
cmL K V f m x y I mgy y   

     
           

  
 

Εξισώσεις Euler-Lagrange: 

• Για τη x συντεταγμένη δεν αλλάζει κάτι   0 0 . 0
d L L

m x x
dt xx


 



  
       

   

 

•Για την y συντεταγμένη      0 0
d L L

m y mg m y mg
dt yy

 
 



 
           

   

(2) 

• Για τη φ συντεταγμένη
21 6

0
12 2 6

d L L m
m

dt m

 
    




 



  
         

  

 (3) 

• Για την παράμετρο λ 0 0
2 2

d L L
y y

dt
 




  
       

   

,  δίνει πάλι τον δεσμό και 

παραγωγίζοντάς την δύο φορές ως προς το χρόνο προκύπτει 

2

2 2
y y   
     
      

 
 (4).  

 



 

Αντικαθιστώντας τη σχέση (3) στην (4) και κατόπιν τη σχέση (4) στην (2) βρίσκουμε  

 

   

 

2

2
2

1 3 6 1

1 3

mg mg   


 

  



     και τροποποιώντας την λίγο καταλήγουμε 

 

2

2
2

3 6 4

1 3
mg

  


 

 



 

 

Η γενικευμένη δύναμη που απορρέει από τον δεσμό με εξίσωση 
2

f y     για το ζεύγος (x,y) της θέσης του 

κέντρου μάζας είναι  

 

( ) 0 1
f f

N f x y x y y
x y

    
        

        
    

 

 

Από τη γωνιακή συντεταγμένη φ απορρέει η ροπή  της δύναμης του δαπέδου στη ράβδο, που ευθύνεται για την  

 

περιστροφή περί το κέντρο μάζας της, 
2

.
2

y





    


 



 
  
  


 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



 

Άσκηση 10 

(Πρόκειται για άσκηση του κ. Αγριόδημα με μια μικρή τροποποίηση στην εκφώνηση).  

Δύο σφαιρίδια με μάζες m1 = m2 = m=1 Kg, συνδέονται με ένα αβαρές και μη εκτατό νήμα μήκους , το οποίο περνά 

μέσα από οπή σε λείο οριζόντιο τραπέζι, όπως φαίνεται στο σχήμα. Το σύστημα των δύο σφαιριδίων συγκρατείται 

αρχικά ακίνητο με το m1 να απέχει από την οπή R=0,2m και το νήμα μόλις που δεν ασκεί δύναμη. Σε μια στιγμή που 

θεωρούμε ως t=0 εκτοξεύουμε το m1 με ταχύτητα μέτρου υ0=4 m/s, κάθετη στο νήμα και ταυτόχρονα αφήνουμε 

ελεύθερο το σφαιρίδιο m2. 
α) Να γραφεί η συνάρτηση Lagrange που περιγράφει το σύστημα. 

β) Να αποδειχθεί ότι η στροφορμή του σφαιριδίου μάζας m1 ως προς την οπή διατηρείται. 

γ) Να υπολογιστεί το μέγιστο ύψος από την αρχική του θέση στο οποίο θα ανέλθει κατακόρυφα το σφαιρίδιο m2. 
δ) Να υπολογιστεί η θέση στην οποία το σφαιρίδιο m2 αποκτά μέγιστη ταχύτητα στη διάρκεια της κίνησής του και 

κατόπιν να υπολογιστεί αυτή. 

Θεωρείστε ότι η ακτίνα της τροχιάς του σφαιριδίου m1 μεταβάλλεται με πολύ μικρό ρυθμό και έτσι η κίνησή του είναι 

σχεδόν κυκλική. Αντιστάσεις αέρα και τριβές θεωρούνται αμελητέες. Δίνεται g=10m/s2 και 32 5,65 . 

 

Απάντηση 

 
 

 

 

 

 

 

 

 

 

α) Η θέση του συστήματος καθορίζεται κάθε στιγμή από τρεις συντεταγμένες, εκ των οποίων οι δύο είναι για τη θέση 

του σώματος m1 που κινείται στο επίπεδο Oxy και η μια για τη θέση του  m2 που κινείται κατά μήκος του 
κατακόρυφου άξονα  z. Υπάρχει, όμως, ένας δεσμός που οφείλεται στο γεγονός ότι τα δύο σφαιρίδια συνδέονται με 

μη εκτατό νήμα. Επομένως, ισχύει .r z     (1), άρα το σύστημα έχει 2 βαθμούς ελευθερίας.  

Επιλέγω ως γενικευμένες συντεταγμένες τις πολικές (r,φ) που καθορίζουν τη θέση του m1.Ταυτόχρονα r είναι το 

μήκος του νήματος που βρίσκεται επί του  τραπεζιού κάθε χρονική στιγμή.  
 

Παραγωγίζοντας τη σχέση (1) ως προς το χρόνο προκύπτει  

0r z r z
   

     (η ακτινική συνιστώσα της ταχύτητας του m1 είναι κάθε στιγμή ίση με την ταχύτητα του m2).    
 

Η κινητική ενέργεια του συστήματος είναι 

   
22 2 2 2 2

2 2 2

1 2 1 2 1 2 1 2 1

1 1 1 1 1 1

2 2 2 2 2 2

z r

rK K K m m z K m r r m r m m r m r   
      


  
                

 

Η δυναμική ενέργεια του συστήματος ως προς το επίπεδο xy είναι 
   1

2 2V m gz V m g r       

Η Λαγκρανζιανή του συστήματος είναι L K V    
2 2

2

1 2 1

1 1

2 2
m m r m r 

 

   2m g r   

 
β) Η γενικευμένη συντεταγμένη φ δεν περιέχεται στη συνάρτηση L.Επομένως, η αντίστοιχη γενικευμένη ορμή pφ 

διατηρείται. Πράγματι από την αντίστοιχη εξίσωση Ε-L προκύπτει:  

 



2 2

1 10 0 0 .(2)
d L L d

m r m r
dt dt

  


 



             
    

 

Η σταθερή ποσότητα είναι η στροφορμή του σφαιριδίου m1 ως προς την οπή. 

 

γ) Επειδή τόσο η συνάρτηση Lagrange όσο και ο δεσμός δεν περιέχουν ρητά τον χρόνο t, υπάρχει το ολοκλήρωμα 

Jacobi που εκφράζει τη διατήρηση της μηχανικής ενέργειας του συστήματος. Πράγματι 

   
2 2

2 21 2 1
1 2 1 2

2 2

m m mL L
J r L r m m r m r r r m g R

r

   



       

 

    
           

       

από όπου προκύπτει 

τελικά         
2 2

21 2 1
2 .

2 2

m m m
J r r m g r E 

 
        

Τη χρονική στιγμή t=0 ισχύουν: 0r


  ( η ταχύτητα υ0 δεν έχει ακτινική συνιστώσα, επειδή είναι κάθετη στο νήμα), 

r R  και  0 0r 


 .Επομένως, η ενέργεια είναι  21
0 0 2

2

m
E m g R    

Αν h είναι το μέγιστο ύψος του σφαιριδίου m2 από την αρχική του θέση, τότε εκείνη τη χρονική στιγμή ισχύει 0z


  

και ταυτόχρονα για το m1 ισχύει 0r


  ( αφού λόγω του δεσμού ισχύει κάθε στιγμή z r
 

  ). Επίσης, την ίδια στιγμή 

είναι  r R h   και  r 


 (κάθετη στο νήμα), οπότε η ενέργεια είναι 

   2 21 1
2 2

2 2

m m
E m g R h m g R h           από όπου προκύπτει  21

2 2
2

m
E m g R m gh    . 

2 2

0 0 2E E gh      (3). 

 

Από τη διατήρηση της στροφορμής του σφαιριδίου m1(σχέση (2)) μεταξύ των δύο παραπάνω χρονικών στιγμών, 

προκύπτει    1 0 1 0 0

R
m R R m r r R R h

R h
     
    

        
   

 (4). Αντικαθιστώντας τη σχέση (4) στη (3) 

και κατόπιν πράξεων καταλήγουμε στη δευτεροβάθμια εξίσωση 
25 2 1,4 0h h    με λύσεις 0,765h m ,  

0,365h m  με δεκτή λύση την 0,765h m . 

 

δ) Η εξίσωση E-L για τη συντεταγμένη r δίνει: 

   
2 2

1 2 1 2 1 2 1 20 0
d L L d

m m r m r m g m m r m r m g
dt r dtr

 
   



      
                     

, όμως r z
 

  και 

1 2m m m  , οπότε η εξίσωση παίρνει τη μορφή 

2

2 z g r
  
  
 

.  Στη θέση μεγίστης ταχύτητας του m2 ισχύει 

0z


 απ’ όπου προκύπτει 

2 2

2 2g r gr r gr   
 

      (5) όπου υγ  η γραμμική ταχύτητα περιστροφής του m1 

ως προς την οπή ( ή   ). 

Από τη διατήρηση της στροφορμής του m1 μεταξύ της αρχικής θέσης και της θέσης μεγίστης ταχύτητας του m2 

προκύπτει 0
1 0 1

R
m R m r

r
 


     (6). Αντικαθιστώντας την (6) στην (5) και θέτοντας R=0,2m, υ0=4m/s και 

210 /g m s  προκύπτει 0,4r m . Αν h1 είναι η μετατόπιση του m2 από την αρχική του θέση μέχρι τη θέση μεγίστης 

ταχύτητάς του, τότε 1 1 0,4 0,2 0,2r R h h r R m        . 

Διατήρηση της ενέργειας μεταξύ της αρχικής θέσης του m2 και της θέσης μέγιστης ταχύτητάς του:

     
2 2

2 2

0 1 0 2 1 2 1 2

1 1 1

2 2 2
E E m m g R m m r m r m g r 

 

         και θέτοντας m1=m2=m=1Kg, υ0= 4m/s

r z
 

  ,    
2

2 2 2

1 10 0,2 0,2 4 /r gr g R h m s 
 

       
 

, 1 0,2 0,2 0,4r R h m      προκύπτει ότι 

η μέγιστη ταχύτητα του σφαιριδίου m2 είναι max 2 /z m s


  . 

 

 



Άσκηση 11 
 

 Η διπλή τροχαλία του σχήματος αποτελείται από δύο ομογενείς ομόκεντρους δίσκους με μάζες Μ1=7Kg και Μ2=4Kg 

και ακτίνες R1=1m και R2=0,5m αντίστοιχα, οι οποίοι είναι συγκολλημένοι μεταξύ τους έτσι, ώστε να περιστρέφονται 
ως ένα στερεό σώμα, χωρίς τριβές, γύρω από σταθερό οριζόντιο άξονα κάθετο στο επίπεδό τους που διέρχεται από το 

κοινό κέντρο τους Ο. 

Στα αυλάκια των δύο δίσκων έχουμε τυλίξει πολλές φορές αβαρή και μη εκτατά νήματα, στα ελεύθερα άκρα των 
οποίων κρέμονται σώματα με μάζες m1=0,5Kg και m2=2Kg αντίστοιχα. Αρχικά το σύστημα τροχαλία-σώματα 

συγκρατείται και τα σώματα m1 και m2 βρίσκονται στις θέσεις 
1 1x  και 

2 2x  , αντίστοιχα. Τη χρονική στιγμή t=0 

αφήνουμε το σύστημα ελεύθερο να κινηθεί, οπότε η τροχαλία περιστρέφεται χωρίς τα νήματα να ολισθαίνουν στα 
αυλάκια των δύο δίσκων.    

Δίνεται ότι η ροπή αδράνειας ως προς το κέντρο μάζας ομογενούς δίσκου μάζας Μ και ακτίνας R είναι 
21

2
cmI MR  

και η επιτάχυνση της βαρύτητας g=10m/s2.  
 

α) Να γραφούν οι εξισώσεις των δεσμών που διέπουν την κίνηση του συστήματος, 

β) Να γραφεί η λαγκρανζιανή του συστήματος εισάγοντας πολλαπλασιαστές Lagrange, 
γ) Να υπολογιστούν οι επιταχύνσεις των σωμάτων και οι τάσεις των νημάτων. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Απάντηση 
α) Αν σε χρονικό διάστημα dt, η τροχαλία στραφεί ωρολογιακά κατά γωνία dφ, τότε η μάζα m2 κατέρχεται κατά dx2 

και η μάζα m1 ανέρχεται κατά dx1. Επειδή τα νήματα δεν γλιστρούν στα αυλάκια των τροχαλιών και είναι μη εκτατά, 

τότε θα ισχύουν: 

2

2

2 2 2 2 2 2 2

0

x

dx R d dx R d x R



          και 

2

1

1 1 1 1 1 1 1

0

x

dx R d dx R d x R



            ,  οπότε οι εξισώσεις των δεσμών είναι  

1 1 1 1f x R        και     2 2 2 2f x R     

β) Οι ταχύτητες των σωμάτων είναι 
 11

1 1

d Rdx
x R

dt dt




 
    ,  2 2x R 

 

  και οι επιταχύνσεις   

1 1x R 
 

   (1)       2 2x R 
 

  (2) 

Η κινητική ενέργεια του συστήματος είναι 

2 2 2

1 21 2

1 1 1

2 2 2
oK m x m x I 

  

    

 

 



Η δυναμική ενέργεια του συστήματος με βάση το επίπεδο αναφοράς 0V  του σχήματος είναι 
1 1 2 2V m gx m gx  

 
 

H λαγκρανζιανή του συστήματος είναι: 

 
Εξισώσεις Euler-Lagrange: 

•   (1)
1 11 1 1 1 1 1 1 1 1 1

11

0 0 0
d L L d

m x m g m x m g m R m g
dt x dtx

   
  



    
                     

(3) 

•   (2)
2 22 2 2 2 2 2 2 2 2 2

22

0 0 0
d L L d

m x m g m x m g m R m g
dt x dtx

   
  



    
                    

(4) 

•  1 1 2 2 1 1 2 20 0 0o o

d L L d
I R R I R R

dt dt
     



 



                
    

  (5) 

 

Αντικαθιστώντας τις σχέσεις (3) και (4) στη σχέση (5) και θέτοντας  
2 2

1 1 2 2

1 1

2 2
oI M R M R    βρίσκουμε για τη 

γωνιακή επιτάχυνση της τροχαλίας      
 2 2 1 1 2

2 21 2
1 1 2 2

1 /

2 2

m R m R g
rad s

M M
m R m R


 
 
   

     
   

. 

Από τις σχέσεις (1) και (2) προκύπτουν οι επιταχύνσεις των σωμάτων  
2

1 1 /x m s


   και 
2

2 0,5 /x m s


 . 

 

Από τις σχέσεις (3) και (4) προκύπτουν
1

11

2
    και 2 19   .  

 

Οι δυνάμεις που ασκούν τα νήματα στα σώματα m1 και m2 αντίστοιχα,  προκύπτουν ως οι αντιδράσεις των δεσμών  
και δίνονται από τις σχέσεις:  

 

   
 1 1 11

1 1 1 1 1

1 1

11

2

x Rf
F f x x x

x x


  

      
       

    
 Ν           και  

 

 
 2 2 22

2 2 2 2 2

2 2

19
x Rf

F f x x x
x x


  

      
       

    
 N 

 

Από τη γωνιακή συντεταγμένη φ απορρέουν οι ροπές των δυνάμεων των νημάτων στο μικρό και μεγάλο δίσκο της 

τροχαλίας  1
1 1 1 1

11
( )

2

f
R Nm     



   
    

 
 και 2

2 2 2 2

19
( )

2

f
R Nm     



   
    

 
 

 
 

 

 
 

 

 
 

   
2 2 2

1 21 1 2 2 1 2 1 1 2 2 1 1 1 1 2 2 2 2

1 1 1

2 2 2
oL K V f f m x m x I m gx m gx x R x R      

  

              


